Tiederunokynä sauhuamaan

OLYMPUS DIGITAL CAMERA

(See English summary below)

Kuinka taivuttaa tiede runoksi? Sitä on pohdittu tällä viikolla käynnissä olevan Euroopan Geotieteiden Yhdistyksen (European Geosciences Union, EGU) vuosikokouksen yhteydessä. Keväisin järjestettävä vuosikokous kerää vuosittain tuhansia geotieteilijöitä Wieniin. Osanottajien ja esitelmien kirjo on laaja. Viime vuonna kokoukseen osallistui 11 837 tutkijaa yli sadasta eri maasta. Tänä vuonna EGU:n vuosikokouksessa on sivuttu tieteen ja taiteen rajapintaa ainakin kolmessa eri sessiossa: 1) Rhyme your research I: Composition, 2) Rhyme your research II: Performance, ja 3) Earth Sciences and Art: a fruitful co-operation for the benefit of the planet and its inhabitants.

En ole itse osallistujana EGU:ssa, vaan olen joutunut tyytymään Twitter-virran antiin kokouksen seuraamisen suhteen. (Jos twiitin kuva ei näy, klikkaa pic.twitter.com -linkkiä)

Tieteen yhdistäminen runouteen ja taiteeseen ei ole uusi keksintö. Esimerkiksi tiederunouden juuret ulottuvat 1700-luvulle. Nykyaikaisia esimerkkejä tieteen ja taiteen rajapinnasta ja sen  käytöstä yleisön saavuttamiseen löytyy useita. Mirjam Glessmer kirjoittaa EGU:n sivuilla julkaistussa blogikirjoituksessaan taiteen olevan yksi keino opettaa tiedettä ja vangita yleisön mielenkiinto, sekä katsoa omaa aihettaan uudesta näkökulmasta. SciFest Poetry Jam ja Event Horizon ovat muutama maailman monista tiederunokilpailuista. Oman taideteoksensa sai alkuvuodesta lähettää NASA:n kampanjaan, jossa etsittiin teoksia avaruuteen lähetettäväksi tulevaisuudessa laukaistavan OSIRIS-REx-luotaimen mukana. Gregory C. Johnson tiivisti IPCC:n tuhansia sivuja paksun ilmastoraportin yhdeksääntoista kuvitettuun haiku-runoon.

Suomenkielisiä tiederunoja varmasti löytyy, vaikka nettihakuna “tiederuno” tuottaa harmillisen niukan tuloksen. Tästä syystä blogitekstiä kuvittaa kaksi kirjoittamaani geologiaa sivuavaa runoa. Kuvat on napsittu vihkon taustasivuilta, johon kirjoitin runojen lisäksi muistiinpanoja lukiessani magmapetrologian tenttiin keväällä 2011. Ne ovat raakaversioista, joten pienistä kirjoitustöppäyksistä ei kannata välittää. Näitä runoja ei ole alunperin myöskään kirjoitettu tiedeviestintää ajatellen.

Tiederuno on englanninkielisten esimerkkien perusteella erinomainen tapa kiteyttää omaa tutkimustaan ja tieteenalaa laajalle yleisölle. Monien hienojen esimerkkien lukemisen jälkeen yritän runoilla jotain myös väitöstutkimukseeni liittyen, pysykää kuulolla! Sillä välin geologisista runoista kiinnostuneiden kannattaa kurkata tämän linkin taakse. GeoSphere-blogista löytyy useita eri kirjoittajien geologisia runoja englanniksi.

Plutonien tilaongelmia – ajatuksia sohvakalustoista ja riittämättömistä neliöistä
plut tilaongelma

Löytyykö sinun pöytälaatikostasi tiederuno? Jos ei, niin kannattaa kokeilla taipuisiko tutkimuksesi tai mielenkiinnon kohteesi sellaiseksi. Mikäli tiedät, että suomenkielistä tiederunoutta on jossakin julkaistu, otan mielelläni vinkit vastaan.

I was following twitter feed from science poetry session at EGU2016. Science poetry seems a great way to tell about your science and field of study to other people. I noticed that google does not give any hits for science poems written by scientists in Finnish. Therefore I decided to publish two science poems that I wrote in 2011 when I was studying to igneous petrology exam. The first one is “Love poem: diapire” and the other is related to the space problems of plutonic intrusions. There are a lot of great and inspirational examples of science poems in English, so I really want to try write something about my thesis research in the future! Thanks for Hazel Gibson for tweeting! 

 

Advertisements

Zirkonia metsästämässä

Aikaisemmin olen kirjoittanut siitä, että tutkimukseni olennainen osa on määrittää Suomen vanhimpien tulivuoriperäisten kivien tarkempaa ikää pikkuruisten zirkoni-mineraalien avulla. Tutkimukseni alkutaival kului suurelta osin näytevalintoja tehden ja zirkoneita etsien. Kaikissa kivilajeissa zirkoneita ei ole riittävästi ikäanalyysejä varten ja vaikka mineraalin saatavuutta pystyy ennustamaan kiven geokemiallisen koostumuksen perusteella, oli laboratoriopäivät joidenkin näytteiden kohdalla melko jännittäviä lopputuloksen kannalta. Koska näytteiden käsittely on melko aikaa vievää, täytyy separoitavien näytteiden määrä suhteuttaa käytettävissä olevaan aikaan ja resursseihin.

Mutta mistä zirkonin metsästäminen alkaa? Zirkonia etsivä geologi suuntaa kulkunsa päättäväisesti kohti kalliopaljastumia. Joskus sopiva paljastuma löytyy sopivasti metsätien varrelta, joskus täytyy taivaltaa suon läpi vaelluskengät märkinä. Lupaavalle paljastumalle päästyään geologi kaivaa esille vasaran (ja suojalasit!) ja nakuttelee sopivasta kohtaa kalliota näytepalasen. Tarvittava näytemäärä riippuu siitä, mitä kivestä halutaan tutkia. Lisäksi myös kivilaji vaikuttaa näytteen kokoon, mutta sopiva määrä mitataan usein kiloissa. Omassa tutkimuksessani tärkeimpiä kivilajeja iänmäärityksen kannalta ovat mahdollisimman silikarikkaat (eli SiO2-rikkaat) kivet, joiden kohdalla zirkonin löytäminen kivestä on todennäköisempää.

Suomen kallioperästä on kuitenkin paljastuneena vain noin 4% ja loput peittyneenä viimeisimmän jääkauden kerrostamien maa-ainesten alle. Sinnikäs geologi menee kuitenkin myös sinne minne aurinko ei paista, eikä vasaran iskut ulotu. Nimittäin kiven sisään. Tutkimuksessani olen käyttänyt materiaalina paljon myös aiemmin kallioperään kairattuja kairasydämiä jolloin olen saanut kerättyä näytteitä myös alueilta jotka eivät ole maanpinnalla paljastuneena.

Vasemmalla kentältä kerättyjä kivinäytteitä. Oikealla kallioperästä kairattu kairasydän tarkasteltavana.
Vasemmalla kentältä kerättyjä kivinäytteitä. Oikealla kallioperästä kairattu kairasydän tarkasteltavana.

Kun näytteet on saatu kentältä tai kairasydänvarastolta laboratoriolle on vuorossa niiden pesu, murskaus ja jauhaminen hienorakeiseksi jauheeksi. Jauhamisen tarkoituksena on irrottaa kivilajia muodostavat mineraalirakeet, ja näin ollen myös zirkonit, toisistaan. Kun murske on jauhettu, pestään saadusta jauheesta hienoin pöly pois. Tämän jälkeen näyte menee uuniin kuivattavaksi ja kun jauhe on täysin kuivunut, on näyte valmis seuraavaan vaiheeseen eli raskasnesteseparointiin!

Näytteet sievässä rivissä odottamassa seuraavaa etappia!
Näytejauheet rivissä odottamassa seuraavaa vaihetta!

Raskasnesteseparointi perustuu mineraalien erottamiseen tiheyserojen avulla. Alakuvassa näyte on sekoitettu metyylijodidiin, jonka tiheys on 3,3 g/cm3.  Näytteenkäsittelyn kohteena oleva zirkoni laskeutuu muiden nestettä raskaampien mineraalien kanssa suppilon alaosaan, josta se kerätään erilleen. Käytännössä neste-näyteseosta joudutaan sekoittamaan moneen otteeseen ja hämmentelyä jatketaan niin kauan että kevyestä näyteosuudesta ei erotu enää nestettä raskaampia mineraaleja. Omien näytteideni kohdalla tähän vaiheeseen kului näytekohtaisesti yleensä yksi kokonainen päivä, mutta helpompia ja zirkonista rikkaampia näytteitä voi käsitellä tällä tavalla 2-4 kappaletta päivässä. Tämän osuuden jälkeen separointia jatketaan muutamalla muulla työvaiheella, sillä yleensä niin kutsuttu raskasfraktio sisältää tässä vaiheessa vielä jonkin verran muita mineraaleja zirkonien lisäksi.

Esimerkkejä aineiden tiheyksistä (g/cm3):
puhdas jää = 0,9; vesi = 1; kvartsi ~2,6; metyylijodidi ~3,3; zirkoni = 4,65.

JES, suppilon pohjalla näkyy hippuja! Toivottavasti joukossa on myös zirkonia!
JES, tätä on odotettu! Suppilon pohjalla näkyy hippuja, toivottavasti joukossa on myös zirkonia!

Usean separointivaiheen jälkeen toivottu tulos on runsas kokoelma zirkoneita erillisessä pienessä purkissaan. Analyyseja varten halutut rakeet noukitaan erilleen käsin. Koska zirkonirakeet ovat yleensä melko pieniä tarvitaan tässä avuksi binokkelimikroskooppi, neula ja vakaa käsi. Väsyneenä tätä vaihetta ei kannata tehdä! Noukitut rakeet asetetaan erityiselle kaksipuoleiselle teipille, jonka avulla rakeet voidaan valaa muottiin ja josta ne voidaan analysoida. Ikämääritykset zirkonista perustuvat radioaktiivisen uraanin hajoamiseen lyijyksi.

Tutkimukseni näytteet separoin Geologian tutkimuskeskuksen, eli GTK:n, laboratoriossa. Teipille noukituista zirkoneista tehdyt näytenapit valmistettiin pääosin Nordsim-laboratorion henkilökunnan toimesta. Ikämäärityksiä olen tehnyt molemmissa laboratorioissa.

Tyynylaavaa! // Pillow lava!

tyynylaava

Tänään aikamatkaamme lähes 3 000 miljoonan vuoden taakse ihailemaan Suomussalmen vihreäkivivyöhykkeeltä löytyvää tyynylaavaa. Tyynylaava on veden pinnan alapuolelle purkautunutta sulaa kiviainesta, jonka pintaosat jäähtyvät nopeasti veden vaikutuksesta ja laava muodostaa pallomaisia rakenteita. Vaikka tällä paikalla tulivuoritoiminta on loppunut tuhansia miljoonia vuosia sitten, on kivessä on edelleen hyvin näkyvissä tyynylaavalle ominainen pallomainen rakenne (1), tyynyjen jäähtymisreunukset (2) ja alkuperäisten kaasurakkuloiden käytävien jäännökset (3). Tekstin alla kuva tuoreesta tyynylaavasta Havaijilta, joissa näkyy hyvin laavan pallomainen rakenne. Suomussalmen tyynylaavat edustavat poikkileikkauksia tällaisista laavamuodostumista.

Today we travel almost 3 000 million years back in time with this picture. It is from the Suomussalmi greenstone belt and in it you can see a well-preserved basaltic pillow lava. Pillow lava represents lava that has erupted under water and due to chilling effect of the water the surface of the lava has cooled down very quickly resulting in pillow-shaped structures. Even though the volcanism in the Suomussalmi area ended thousands of millions of years ago you can still see the rounded shape of the pillows (1), chilled rims (2), and remnants of gas vesicles (3). Below this text is a picture from a fresh pillow lava from Hawaii, in which you can see the shape of the lava pillows. The pillow lava from Suomussalmi represent a cross-section of such structures.

http://www.photolib.noaa.gov/bigs/nur05018.jpg
Tyynylaavaa Havaijilta. // Pillow lava from Hawaii. Credit: OAR/National Undersea Research Program (NURP)

Saisiko olla hieman popcornia? …eli radioaktiivisuuden perusteet maissinjyvässä!

Viime viikolla kirjoitin siitä että zirkoni on tutkimukseni paras ystävä, sillä se tallentaa muistiinsa tapahtumia vuosimiljardien takaa. Zirkonin käyttökelpoisuus pohjautuu siihen, että kiteytyessään kivisulasta, eli magmasta, zirkoni ottaa rakenteeseensa vastaan radioaktiivista uraania (U), mutta ei juurikaan uraanin hajoamistuotetta lyijyä (Pb). Tätä tapahtumaa voi verrata kattilaan jonne kaadetaan maissinjyviä.

kiteytyvä-zirkoni
Leffaeväät tuloillaan! Kiteytyvä zirkoni ottaa rakenteeseensa vastaan vain uraania. Kattila ottaa vastaan vain poksahtamattomia maissinjyviä.

Kiteytynyt zirkoni pysyy alle 900°C:ssa suljettuna systeeminä – samalla tavalla kuin kannella suljettu kattila. Parhaimmassa tapauksessa zirkoni, sekä kattilan kansi, pysyy suljettuna kiteytymishetkestä tähän päivään. Tämä tarkoittaa että sinne ei siis ajan kuluessa pääse livahtamaan lisää (eikä sieltä myöskään poistu) maissinjyviä tai valmiita popcorneja.

suljettu-systeemi
Zirkoni ja kattila ajanhetkellä 0, eli kun systeemi on juuri sulkeutunut.

Ajan kuluessa zirkonissa oleva radioaktiivinen uraani (=äiti-isotooppi) hajoaa määrätyn hajoamissarjan kautta stabiiliksi lyijyksi (=tytär-isotooppi). Tapahtuma on yksisuuntainen: lyijy ei voi muuttua takaisin uraaniksi. Laittaessasi maissinjyviä kattilaan, et voi tietää mikä niistä poksahtaa ensimmäisenä (= radioaktiivisuuden spontaanisuus). Ja kun maissinjyvä on poksahtanut maukkaaksi popcorniksi, se ei voi muuttua takaisin jyväksi (= radioaktiivisen tapahtuman peruuttamattomuus).

Kohtaamisia isotooppimaailmassa. Hiili on stabiili isotooppi, toisin kuin uraani. **
Kohtaamisia isotooppimaailmassa. Hiili-12 isotooppi on yksi pysyvistä eli stabiileista isotoopeista, toisin kuin uraani. **

Radioaktiivisten aineiden  hajoamista kuvataan puoliintumisajalla. Radioaktiivisten alkuaineiden puoliintumisajat vaihtelevat. Uraanin 235-isotoopin puoliintumisaika on 704 miljoonaa vuotta. Tämä tarkoittaa että yhden puoliintumisajan, eli 704 miljoonan vuoden kuluessa, puolet äiti-isotoopeista on hajonnut tytär-isotoopeiksi. Mittaamalla äiti- ja tytärisotooppien määrät, voidaan kiven ikä laskea tiedetyn puoliintumisajan avulla. Popcornivertauksessa tämä tarkoittaisi sitä, että yhden puoliintumisajan kuluttua puolet kattilassa olevista jyvistä on poksahtanut popcorniksi. Jos tiedettäisiin mikä on maissinjyvien “puoliintumisaika” voitaisiin jäljellä olevien poksahtamattomien (äiti-isotoopit) ja poksahtaneiden maissinjyvien (tytär-isotoopit) määrät laskemalla arvioida milloin kattilallinen maissinjyviä laitettiin hellalle.

IMG_6750
Yksi puoliintumisaika takana! Vielä pitää paahtaa että saa hyvät leffaeväät!

Kannattaa lukea myös siitä mistä sitä zirkonia oikein löytyy!

**Kuva muokattu täältä. Idea popcornin käyttöön radioaktiivisen hajoamisen analogiana alunperin täältä.

Kivi muistaa ikänsä

Tutkimukseni keskeinen asia on Suomen vanhimpien tulivuoriperäisten kivien iän ja ikäjakauman tarkempi selvitys. Tutkimuksestani kertoessa usein kysytty kysymys liittyy siihen, miten kiven iän voi saada selville.

Tieto maapallon kehityshistoriasta on kartutettu tutkimalla esimerkiksi erilaisten kivien ikiä ja niiden suhteita.  Suhteellinen ikä vertailee eri kiviyksiköitä toistensa suhteen. Ihmisten ikiin tätä sovellettaessa voisimme sanoa että Sauli on Pekkaa nuorempi (mutta emme välttämättä tietäisi kummankaan varsinaista ikää). Absoluuttinen ikä sen sijaan kertoo kuinka vanha kivi on. Aikaisempaan esimerkkiin soveltaen voisimme siis jollakin tavalla saada selville, että Pekka on 15-vuotias. Kun kahden kiviyksikön suhde tunnetaan, voidaan tämä tieto yhdistää toisesta kivestä tehtyyn absoluuttiseen iänmääritykseen. Saulin ja Pekan tapauksessa tietäisimme siis sen, että Pekka on 15-vuotias ja Sauli on Pekkaa nuorempi (eli alle 15-vuotta). Saulin absoluuttisen iän selvittämiseksi meidän pitäisi tehdä vielä tarkempaa tutkimustyötä.

Tieto siitä, miten maapallo on kehittynyt lainehtivasta magmamerestä siniseksi planeetaksi mantereineen, on rakentunut muun muassa kivien suhteellisten ja absoluuttisten ikien tutkimisen kautta. Uusien tutkimusten myötä tätä historiaa on mahdollista saada vielä tarkemmaksi.

Zirkoni – geologin paras ystävä?

Pääpaino omassa tutkimuksessani on kivien absoluuttisen iän määrittäminen. Tähän tarkoitukseen voidaan käyttää useita mineraaleja, mutta hyvin vanhojen kivien ikämäärityksen kannalta parhaimpiin mineraaleihin kuuluu kestävä zirkoni (kemiallinen kaava: ZrSiO4). Se pyrkii säilyttämään tallentamansa alkuperäisen geologisen tiedon parhaansa mukaan – siitäkin huolimatta, että kivi muokkautuisi uudelleen kallioperän nuorempien kehitysvaiheiden myötä! Alkuperäisen tiedon lisäksi zirkoni saattaa tallentaa ikätiedon myös näistä nuoremmista tapahtumista, jolloin pieni kide voi olla arvokas tietopaketti kallioperämme monivaiheisesta historiasta.

Zirkonista saatu ikä perustuu mineraalirakeesta mitattuihin isotooppisuhteisiin. Omassa tutkimuksessani olen käyttänyt analyysimenetelmiä, joissa analysoin kivestä erotettujen yksittäisten zirkoni-kiteiden ikiä. Monia syntymäpäiväsankareita lohdutellaan sanonnalla “ikä on vain numero”. Tämä pitää paikkansa myös zirkonien kohdalla! Ikätulkinnan tekeminen ei kaikkien kivien suhteen ole aina niin yksinkertaista ja sen rinnalle tarvitaan aina muutakin tutkimusta kuten kenttähavaintoja, etenkin Suomen moneen kertaan rytätyssä ja uudelleen muokatussa kallioperässä.

Vaikka tutkimukseni keskittyy vulkaniitteihin, olen kerännyt näytteitä myös vulkaniittijaksoihin liittyvistä sedimenttikivistä sillä ne ovat osa vulkaniittijaksojen myöhempää kehitystä. Sedimenttikivien zirkonirakeet ovat peräisin muualta rapautuneesta kiviaineksesta ja näin ollen sedimenttikivien zirkonivarastoja penkoessa saattaa löytää esimerkiksi viitteitä vulkaniittijaksoja paljon vanhempiin tai nuorempiin kiviin. Lisäksi sedimenttikivien zirkonivarastot kertovat iän sille kuinka vanha sedimenttikivi voi maksimissaan olla.

Vaikka kaikki geologit eivät zirkoneista niin piittaa, niin tutkimusmielessä ne lukeutuvat tällä hetkellä kyllä omiin parhaimpiin ystäviini! Tästä syystä yksi joulukuisen työmatkan parhaista “turistikohteista” oli piipahtaa kadulla joka on nimetty näiden pienien kiteiden mukaan!

Zircon Place, San Fransisco, Kalifornia
Zircon Place, San Fransisco, Kalifornia

Suomen, ja Euroopan unionin, alueelta löydetty vanhin kivi on Siuruan gneissi joka on iältään noin 3,5 miljardia vuotta1. Vanhimmat maapallolta löydetyt zirkonit ovat lähes 4,4 miljardia vuotta vanhoja ja ne ovat löytyneet Australiasta, kuuluisasta Jack Hillsin konglomeraatista. Kiven ikää kysyttäessä geologin suusta kumpuaa vastaukseksi usein miljoonia ja tuhansia miljoonia vuosia (ainakin Suomen kallioperän kohdalla). Kiviä syntyy kuitenkin koko ajan lisää ja niiden ikä tiedetään joskus hyvinkin tarkasti (eikä siihen tarvita edes zirkonia)!

islanti
Tämä kivi on syntynyt Eyjafjallajökull-tulivuoren purkautuessa 2010. Purkaus muistetaan siitä, että miltei lähes koko Euroopan lentoliikenne pysäytettiin väliaikaisesti ilmakehässä olleen tuhkapilven vuoksi.

Kannattaa pysyä kuulolla, ensi viikolla paneudutaan tarkemmin radioaktiivisuuteen ja isotooppisuhteisiin (popcornin poksauttelun kautta)!

—-Viite:

1Mutanen, T. ja Huhma, H. The 3.5 Ga Siurua trondjhemite gneiss in the Archaean Pudasjärvi Belt, northern Finland. Bulletin of the Geological Society of Finland 75; 51–68.